

America's Premium Magnet Wire Service

45 Progress Avenue • Cranberry Industrial Park Cranberry Township, PA USA 16066-3511

Magnet Wire Fabricated To Your Specifications

Our complete wire inventory is listed on our website at: www.swwireco.com

Conductor Properties

COPPER AND ALUMINUM CONDUCTORS

AREA, WEIGHT AND RESISTANCE

WEIGHT OF BARE CONDUCTOR WEIGHT OF BARE CONDUCTOR (cont'd) Pounds Per 1000 Feet Copper: Lbs./M Ft. = 0.003027 D2 General Formula: Lbs./M Ft. = 0.000433526 (d) (A) Aluminum: Lbs./M Ft. = 0.0009203 D2 Copper: Lbs./M Ft. = 0.0038540A Where: D = Diameter of bare conductor, mils. Aluminum: Lbs./M Ft. = 0.0011718A d = Density of conductor metal, grams/cm3. A = Bare conductor cross-sectional area in Square Mils. d = Density of conductor, grams/cm3. Formulas for weight are based on a density of 8.89 for copper and For round conductor, where the cross-sectional area may be more 2.703 for aluminum. conveniently expressed in Circular Mils, the following formulas are

CROSS-SECTIONAL AREA

General Formula: Lbs./M Ft. = 0.00034047 (d) (D2)

CONDUCTOR RESISTANCE

Round Wire

Circular Mil Area = D2

Square Mil Area = $\pi/4$ D²=0.7854 D² Square Inch Area = 0.7854 x 10 D2

Where: D = Diameter of bare conductor in mils (1/1000 inches),

i.e. 0.0403" Diam. = 40.3 mils

Square and Rectangular Wire

Circular Mil Area = 1.2732 (Wt -0.8584R2)

Square Mil Area = WT -0.8584R2

Square Inch Area

 $= 1 \times 10^{-6} (WT - .8584 R^{2}), or$ =wt -0.8584r2, when w, t and r

are expressed in inches.

Note: 1 sq. mil = 10⁻⁶ sq. inches.

Where: T = Thickness in mils. W=Width in mils.

R = Corner Radius in mils. For square wire: W = T.

For rectangular wire with full rounded edges:

R = T/2

Notes: When calculations involve any of the following standard ASTM corner radii, the values for Corner Area Loss listed below may be substituted for the term "0.8584R2" in the above formulas.

Nominal ASTM*	Corner Area
Corner Radii (Inches)	Loss Factors
0.094	7585.
0.063	3407.
0.040	1373.
0.032	879.0
0.026	580.3
0.020	343.4
0.016	219.8

^{*}ASTM Standard B48-88 for Copper.

Ohms Per 1000 Feet

For any conductor, Ft./Lb. = 1000/Lbs./M Ft.

Round Conductor:

Feet Per Pound

General Formula: Ohms/M Ft. = 1000 R/D2

Copper: Ohms/M Ft. = 10371/D2 Aluminum: Ohms/M Ft. = 16782/D2

Where R = Volume resistivity, ohm-circ.mil/ft.

D = Bare conductor diameter, mils.

Square and Rectangular Conductor:

General Formula: Ohms/M Ft. = 785.4 R/A

Copper: Ohms/M Ft. = 8145.5/A Aluminum: Ohms/M Ft. = 13180/A

Where: R = Volume resistivity, ohm-circ.mil/ft.1

Copper = 10.371 ohm-circ. mil/ft. Aluminum = 16.782 ohm-circ. mil/ft. A = Cross-sectional area, square mils.

Ohms Per Pound

For any conductor, Ohms/Lb. = Ohms/M Ft./Lbs./M Ft.

Feet Per Ohm

For any conductor, Feet/Ohm = 1000/Ohms/M Ft.

'The volume resistivity factors at 20°C are based on conductivities of 100% and 61.8%. IACS, for soft, annealed copper and aluminum respectively. Conductivities for hard drawn conductors are: Copper 97%; and Aluminum, 61%.

724-772-0049 8:00 AM - 5:00 PM EST Monday-Friday

800-635-8467

24-Hour, 7 Day

724.772.0052 Fax

Find Us On The Web! www.swwireco.com

^{*}ASTM Standard B324-88 for Aluminum.